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A microstructural approach to the mechanical 
response of composite systems with randomly 
oriented, short fibres 
Part 1 Theoretical analysis 

Y. M. H A D D A D  
Department of Mechanical Engineering, University of Ottawa, Ottawa K I N 6N5, Canada 

This paper is concerned with a new deformation theory of composite systems with randomly 
oriented short fibres. The material system is regarded as a two-dimensional elastic matrix that 
contains a random arrangement of short, viscoelastic fibres. Due to the inherent randomness 
of the physical and geometrical characteristics of the microstructure, probabilistic concepts are 
used. In this regard, the significant field quantities involved in the deformation process are 
treated in the analysis as stochastic variables and the deformation process itself is seen as a 
stochastic process. The analysis is presented in a general form and, hence, is applicable to a 
large class of fibre-composite systems. 

1. I n t r o d u c t i o n  
This paper aims at formulating the deformation 
process in fibre-composite materials with time 
memory and having discrete microstructure. Fig. 1 
shows a schematic illustration of a model of a two- 
dimensional composite system dealt with in the present 
analysis. The material system is seen to be an elastic 
matrix which contains a layer of randomly oriented, 
short, viscoelastic fibres. Examples of such materials 
are epoxy preimpregnated (PREPREG) composites 
reinforced with chopped fibres of cellulosic origin such 
as paper, nylon, polymeric fibres and related types. 
Information regarding the actual structure of such 
materials, their fabrication and applications is given 
by Lubin [1] and Richardson [2]. 

Traditionally, models that are based on continuum 
theory have been used for the prediction of the 
response behaviour of fibre-composites. In recent 
years, attempts have been made to modify the classical 
continuum approach by allowing for microscopic or 
"local" quantities to enter into the analysis, but 
without removing the main restrictions imposed by 
continuum physics on such formulations. In this con- 
text, "deterministic" models were suggested by Hill [3] 
Biirgel et al. [4] and Chou and Chou [5], among 
others. 

Discrete composite systems, such as those dealt 
with in the present analysis, have, however, distinct 
features. Firstly, there exists a multitude of singular 
surfaces (such as internal interfaces between the fibres 
and the matrix) within a given domain of the macro- 
scopic material body. Secondly, the fibrous elements 
of the structure of the system have a finite size and 
exhibit random physical and configurational proper- 
ties that cannot readily be brought into line with the 
conventional deterministic macroscopic relations. In 
view of these facts, it is evident that a new approach 

based on the characteristics of the real microstructure 
should be followed. Thus, the response behaviour of 
the fibre-composite system is studied in this paper by 
using a probabilistic microstructural approach [6, 7]. 
In this approach, the mechanics of the discrete micro- 
structure introduce the relevant field quantities as 
random variables or functions of such variables and 
their corresponding distribution functions. Further, 
the deformation behaviour of individual fibres, and 
their interactions with the matrix, are considered in 
this analysis to be time-dependent in nature. Hence, it 
appears appropriate in dealing with such systems to 
consider the deformation process itself as a stochastic 
process. 

In order to describe the mechanical response of a 
composite system with the inclusion of the microstruc- 
ture, it is necessary to consider the response of an 
actual structural domain of the material which, on a 
local scale, may differ considerably from an average 
response if the phenomenological approach were 
taken. Such local deviations in mechanical response 
which would be neglected by ignoring the micro- 
structure are, on the other hand, directly related to 
basic properties of the non-homogeneous composite 
system. 

In order to extend the analysis to the practical case 
of a two-dimensional composite, it is necessary to 
make use of "mesoscopic quantities" arising from con- 
siderations of the existence of a statistical ensemble 
of local, structural domains within an intermediate 
domain of the material specimen. Further, it is equally 
important to find a connection between the micro- 
scopic and the macroscopic response formulations. 
Thus, the analysis aims at the formulation of a set of 
"governing response equations" for the structured 
composite system which, in contrast to the conven- 
tional formulations, are based on the concepts of 
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Figure 1 Two-dimensional model of a fibre-composite. 

statistical theory and probabilistic micromechanics 
[6]. In this context, it has been found useful to employ 
operational representation of the various relations. 
Hence, the notion of a "material operator" charac- 
teristic of the mechanical response of an intermediate 
domain of the material is introduced. This material 
operator provides the connection between the stress 
field and occurring deformations within the inter- 
mediate domain under consideration. It contains in its 
argument those stochastic variables, or functions of 
such variables, distinctive of the microstructure within 
the intermediate domain. 

2. Probabi l is t ic ,  micrornechanica l  
response 

2.1. A structural domain 
A structural domain (~) is defined as the smallest 
region of the medium that represents the mechanical 

and physical characteristics of the microstructure at 
the "micro" level. This local domain, as shown in 
Fig. 2, is chosen to represent the characteristics of 
individual fibres together with those of the surround- 
ing matrix material within a scanning area of dimen- 
sions # x #. 

Throughout the analysis, a superscript ~ to the left 
of the symbol refers to a structural domain of the 
composite system. The quantities referring to an indi- 
vidual fibre are denoted by a superscript f, while those 
referring to the adjacent matrix material are desig- 
nated by a superscript m. The quantities referring to 
the interfacial bonding between the fibre and the 
matrix are identified by a superscript B. 

For the description of the deformation kinematics 
of the microstructure within (~), it is convenient to 
use two local Cartesian frames of reference, i.e. fY~ 
(i = 1, 2, 3) attached to the end of the fibre and mY k 
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Figure 3 Deformation kinematics of a structural domain e. 

(k = 1, 2, 3) attached locally to the adjacent matrix, 
Fig. 2. These coordinate-frames are to express the 
motion of the microstructure relative to an external 
fixed Cartesian frame ZI (I = 1, 2, 3). In general, all 
kinematic parameters related to the underformed con- 
figuration of the microstructure are denoted in upper 
case, while those for the deformed configuration, are 
designated in lower case. 

With reference to Fig. 3, let the position vector of a 
point within fibre f be denoted by rX, while the corre- 
sponding position vector of a point within the adjacent 
matrix, m be denoted by mS. The microdeformation in 
the fibre can then be expressed as 

fui(fXi, t) = rxi(t ) -- fXi (la) 

and that in the matrix will be 

muk(mXk, t) = mXk(t  ) - -  m x  k. ( l b )  

The corresponding strain tensor may be written as 

= 1 b/ b/j,i) ( l c )  ~j ~-( ~,j + 

where a comma indicates a partial differentiation. 
Both the displacement field ui(X~, t) and the strain field 
~ij (X~, t) are assumed in the analysis to be infinitesimal. 

2. 1.1. Viscoelastic fibre 
For the simplification of the analysis, the continuum 
approach is maintained in this paper for the response 
of the single fibre. It is understood that the effect of 
fibre substructural parameters [8] will not be con- 
sidered at the present stage of presentation. Hence, it 
is considered in the present analysis that the overall 
response of single fibre is of greater significance to the 
mechanical behaviour of a composite system. 

From a phenomenological point of view, the con- 
cept of the relaxation function in linear viscoelasticity 

can be expressed [9] as follows 

~ij(xi, t) = Eijkl(Xi, /)ekl(Xi, 0 +) 

f; -I- + Jijkl(Xi, t - -  "C)ekl('C ) dr (2) 

where ~ij is the stress tensor, Eij u and Jijkl a r e  the 
tensorial elastic and relaxation functions, respectively. 
The solution of the relaxation kernel Jijkl of Equation 
2 has been considered for the uniaxial test situation by 
Haddad [10]. In view of the mathematical analysis 
carried out in the latter reference, Equation 2 may be 
written for the uniaxial case as 

~(t) = Ee  + h(e,  bl ,  b2, . . . ) 
N 

x ~, Di[exp (F , t )  - 1] (3) 
[=1 

(I = 1 , 2 , . . . , N )  

in which the function h(- ) accounts for the nonlinear 
hereditary effects and is given in a parametric form. In 
Equation 3, D I, FI (I = 1, 2 . . . . .  N) and bl, b2 . . . .  
are constants to be determined. The values of these 
constants can be established by a minimization 
procedure using available experimental data concern- 
ing the relaxation behaviour of the particular fibre 
material under consideration [10]. 

In the case of cellulosic fibres, for instance, the 
function h( - )  in Equation 3 may be assumed [7] to 
take the simple form 

h(- )  = exp(be) - 1 (4) 

where b is a material constant. Expanding asymp- 
totically the exponential term in the form of h(-)  
given in Equation 4 and retaining only the first two 
terms, Equation 3 becomes 

~(t) = { E - b , = , ~ D ~ [ 1 - e x p ( F i t ) ]  }vu(t ) ;  (5) 

(I = 1 , 2 , . . . , N )  
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Figure 4 Deformation kinematics of fibre-matrix interface. 

where V is the gradient operator on the fibre micro- 
deformation u(t). Thus, if for instance from a system 
theoretical point of view, it is considered that the 
microstress in the fibre is the stimulus and the micro- 
deformation is the corresponding response, then the 
operational equation for the response behaviour of 
viscoelastic fibre becomes: 

f~(t)  = fF(t/u(t) (6) 

where rF(t) is a transform operator which takes, in 
view of Equation 5 the form: 

rF(t) = {E-b~=~ D , [ 1 - e x p ( F ~ t ) ] } r V  (7) 

(I = 1, 2 . . . . .  N) 

In generalized notations, however, Equation 6 may 
be written as: 

r~u(t) = rruk(Oruk(t) (8) 

This response behaviour relation will be used sub- 
sequently in the derivation of the response of the local 
domain (c0. 

2. 1.2. Elastic matrix 
The elastic response of the matrix material, at the local 
level, may be expressed in an operational form as 

na~ij(t ) = mFijkrnuk(t) (9) 

where the material tensorial modulus mF~j k is related to 
the generalized elastic tensor by 

mFij k = rnEijksIn V s (10) 

in which "Vs = 8/amys is the gradient with respect to 
the matrix local coordinate frame. 

2. 1.3. Fibre-matrix interface 
In any microstructural approach to the response of 
fibre composite systems, it is of utmost importance 
[11, 12] to include in the formulation the effect of the 
interfacial bonding between the fibres and the matrix. 

Studies on the subject are conventionally conducted in 
two ways, i.e. macroscopic and microscopic. 

Within the macroscopic scheme, the approach is to 
estimate the shear modulus of the fibre-matrix inter- 
face from pull out tests on fibres that are embedded in 
the matrix to various lengths [e.g. 11, 13]. 

In the microscopic approach, however, significant 
research efforts were carried out [e.g. 14, 15], to 
explore the nature of adhesive bonding between differ- 
ent fibre materials and matrix substances particulars 
of composite structures. Due to the complexity of the 
molecular structure and of the surface conditions of 
the materials involved, there are still grave exper- 
imental difficulties which need to be overcome [8, 16]. 
One may, however, advance the argument that two 
types of bonding could be primarily responsible for 
the strength of the fibre-matrix interface, i.e. chemi- 
cal, and the so-called physical (or frictional) bonding. 
The first is determined essentially by the compatibility 
of the molecular structure of the materials of the fibre 
and the matrix to form a particular type of chemical 
bonding. Such compatibility may be translated in 
terms of the type of matching atoms that might be 
available to form the bond, their separation vector, 
among other factors [17]. On the other hand, frictional 
bonding is due to the surface configuration of the two 
matching components and the extent of the contact 
forces that may develop between them during the 
heating and cooling cycles of the manufacturing 
process of the composite. It is also possible that the 
products of chemical reaction between certain types of 
fibre material and others of matrix substance accu- 
mulate on the surface of the fibre in large enough 
quantity and act as bonding between the fibre and the 
matrix. In this case, such an effect would be influenced 
by factors such as curing conditions and time, among 
others. 

In the study of the deformation kinematics of the 
fibre-matrix interface (Fig. 4) the distance vector BA 
between two matching points q and q' of the fibre and 
the matrix, respectively, is considered to be the basic 
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kinematic parameter of an interfacial bond between 
the two components. The counterpart of this vector in 
the deformed state is denoted by BtJ and the micro- 
deformation in the bond can thus be read as 

where 

and 

BuI( t  ) = B~I( t  ) - -  BA I ( l l )  

BA I = m x  I - -  fz~ I ( 1 2 a )  

B(~i(t ) = mx l ( t  ) - -  f x i ( t  ) (12b)  

Hence, by combining Equations 11 and 12, the inter- 
facial deformation may be expressed, in view of Figs 3 
and 4, by 

BuI( t )  = muI( t )  - -  ful(t) (13) 

In the case of chemical bonding, for instance, 
between matching the points of the fibre and the 
matrix, a "pair potential" form appears to be most 
suitable for the description of the bonding interaction. 
From classical considerations, one of the usual forms 
of such a potential in the one dimensional case is 
represented by "Morse function" [18] as follows: 

BW = BW0[exp (_2vBu) _ 2 exp (--vBu)] (14) 

where aW 0 is the equilibrium value of the Morse poten- 
tial at the value ofBu = 0 and v is the Morse constant. 
The material properties represented by the constants 
W0 and v are obtainable from spectroscopic studies. 

Based on the bonding potential form of Equation 
14, an operational response behaviour relation for the 
bonding interaction may be expressed as [17]: 

a~,j(t) -- aFuKauK(t) (15) 

where the expression for the material operator BFxj K 
can be written as 

BFIJK --  - -  2W~ BnjeKei I (16) 
BA(t) 

in which BA(t) is the actual bonded region within the 
fibre-matrix interface at time t. Bnj is the unit normal 
to the interface at the point of consideration and e)~ is 
a unit base vector associated with the external co- 
ordinate frame (Fig. 4). 

2. 1.4. Response behaviour of  a structural 
domain (cQ 

The load transfer to the local microstructure of the 
composite has been considered in the Appendix. In 
view of this analysis, the microstress in (~) may be 
expressed, in a probabilistic manner, by 

~ij(t) = Plfeu(t) + P2mr (17) 

in which the probabilities P1 and Pz are expressed in 
terms of the microstructure (see Appendix, Equations 
A8 and A10). On the other hand, a relationship has 
been established between m~ij( t  ) and f~l j ( t ) ,  namely 

m~Ij( t )  = ~tc(t)feu(t) (18) 

where "x(t) is a time-dependent function, character- 
istic of the microstructure, expressed by Equation 
A20. Hence, combining Equations 17 and 18, it 

follows that 

~ l J ( t )  = [P1 + P2~K(t ) ] f~I j ( t )  (19a) 

or, in terms of the matrix microstress 

"~u(t) = [PI=K-I(t) -I- P2]mr (19b) 

Substituting in Equation 19a the equivalence to the 
fibre microstress from Equation 8, the local response 
equation, valid within (~), becomes 

~ l J ( t )  = { [ e l  + e2~Ktj(t)]fmijljfFijk(t)}fUk(t) (20) 

where fAijlj is a transformation of orientation matrix. 
Introducing the transform operator afTiJk(l), 

"fyijk(t) = {[P, + P2=x(t)]rAijijrFijk(t)} (21) 

the response Equation 20 becomes 

={,,(t) = =ry,jk(t) fuk(t ) (22) 

In a similar manner, by combining Equations 9 and 
19b, one can write the structural domain response 
equation in terms of the matrix local deformation as 

~ i j ( t )  = {[pl~K-t(t) + P2lmAi j l jmFi jk }m.k( t )  

= "myuk(t)muk(t) (23) 

where the material operator ~nyijk(t ) takes the form 

~n];iJk(t ) = {[PI=K-I(t) + p2]mAi j l jmr i j k }  (24) 

Further, from Equations 22 and 23, a relationship can 
be expressed between the two material operators of (~) 
as follows: 

ctf~IJk (t) = mn]~iJk(t)muk(t)fUkl(t ) (25) 

2.2. Trans i t ion to the macroscop ic  response 
Since the composite system that occupies a given 
physical domain is regarded in the present analysis 
as a discrete medium, a transition from the local 
description to the macroscopic one must be attempted. 
In this context, the concept of the intermediate 
domain, or mesodomain [6] is introduced. It is the 
smallest region of the medium on the boundary of 
which the macroscopic observables are still valid 
but on the other hand, is large enough to contain a 
statistical number of structural domains. This permits 
statistical principles to be introduced in the analysis. It 
is further postulated that within the macroregion of 
the system, the mesodomains are denumerable and 
non-intersecting such that: 

M~= MV = V (26) 
1 

M'V~ M2V = q~; (M, V= M2) 

where ~ designates the total number of mesodomains 
within a macrovolume V, q~ is the null set and U, 
indicate the union and intersection of material 
domains, respectively. 

In the case of a two dimensional composite system 
under loading in the Z 1 -direction, for instance (Fig. 1), 
a mesodomain M (M = 1, 2 . . . .  , () may be specified 
by the region bounded by the two theoretical scanning 
lines $1 - SI and $2 - $2 which are perpendicular to 
the direction of external loading. The width of this 
domain is determined, following the above, in relation 
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to the actual dimensions of the structural domain "~" 
such that, within " M " ,  ~ = 1, 2, . . . ,  MN. MNis very 
large. Within a mesodomain, all microscopic field 
quantities are considered to be stochastic functions of 
primitive random variables. Thus, the components of 
the fibre-microdeformation, for example, are seen as 
stochastic functions fuK(frK, t). The latter can be 
regarded as a family of random variables fuK(frK) t 
depending on the time parameter t, or a family of 
curves ruK(t)f r depending on the position vector fr. 

At a particular time t, ru K (t) can be expressed as a 
mean value over the mesodomain and a fluctuating 
component as 

fuK(t ) = M(fuK(t))  -~- f*uK(t) (27) 

where the fluctuating part f*UK(t ) is due to the random 
nature of the microstructure of the composite system 
and pertains locally to the particular fibre. 

Letting Mp(. ) denote the probability distribution of 
a random quantity within the mesodomain, then in 
view of the structural domain response (Equation 22), 
the probabilistic stress distribution within the 
mesodomain may be expressed by: 

MP[~Ij(t)]  = MP[~fTIJk(t)]Mp[fuk(t)] (28a) 

or, alternatively, with reference to Equation 23, as 

Me['~j(t)] = MP['m?iJk(t)]Mp[muk(t)] (28b) 

In the present analysis, the mesoscopic quantities, 
valid on the boundary of the mesodomain, are taken 
as the expected values or the average of  the corre- 
sponding microparameters. However, a more detailed 
analysis, as shown in [6], may take also higher 
moments of the relevant quantities in compliance 
with correlation theory [19]. Thus, with reference 
to Equation 25a, one may express the mesoscopic 
response relation by an averaging procedure over the 
mesodomain, i.e., 

Mau(t  ) = M ( ~ l j ( t ) )  = M ( c t f ~ i J k ( t ) ) M ( f u k ( t ) )  

= MfFuk(t)fUk(t ) (29) 

where the mean value M (~ ~IJ (t)) may be considered, as 
a first approximation, to be associated with the value 
of the stress prescribed by the continuum mechanics 
theory on the boundary of  the mesodomain. In this 
equation, the mesoscopic material operator MfFIj k (t) is 
expressed, Equation 21, by 

Mffijk(t ) = M(=f~iJk(t)) 

= ({[P1 + P2"x(t)]fAijijfFijk(t)}) (30) 

Also, with reference to Equation 28b, the mesoscopic 
response may be expressed in terms of the matrix 
deformation as 

MO'Ij(/) = M ( ~ l j ( t ) )  = M(~tm]llJk(t))M(mUk(t)) 

= MmFi)k(t)mUK(t ) (31) 

where, with reference to Equation 24, one can write 

MmFijk(t ) ---- M({[e,etC-l(t)  -t- p2]mAijlsmFijk}) (32) 

It should be noted that the ensemble averages of the 
microstress and the microdeformation as shown 
above are taken with respect to their corresponding 
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probabilistic distributions in the mesodomain. In this 
context, it should be mentioned that such distri- 
butions can be found experimentally for the micro- 
deformation by use of stress-holographic interfero- 
metry technique [20]. 

The variance of the stress distribution (Equation 
28) however, can be expressed by incorporating the 
fluctuating part of the random variable ct~ij(t ). Hence, 
with reference to Equations 22 and 29, the variance 
becomes 

M(ct*~lj(t)~t*~lj(t)) = M(,[~f?uk(t)ruK(t ) 

-- MfFuk(t)fuk(t)]2) (33) 

or, in terms of the microdeformations in the matrix, 
with reference to Equations 23 and 31, as 

M(~t*~ij (t) ~t*~ij ( t ) )  = M([=m])iJk (/)mUk (t) 

- MmFijk(t)mUk(t)]2 ) (34) 

It should, however, be mentioned that the mean 
value and the variance do not specify the stress distri- 
bution (Equation 28) uniquely. However, this may 
suffice for practical applications. This can be supported 
by the fact that the random distributions encountered 
in practice turn out to be "Gaussian". For a Gaussian 
distribution, the mean value and the variance com- 
pletely specify the random variable. 

3. T ime-evolut ion  of the internal 
de format ion  process 

The internal deformation process corresponding to 
the mechanical response of the microstructure is 
considered, in this analysis, to be stochastic of the 
stationary Markov type [21]. Thus, the fibre defor- 
mation process [ruK(t); t > 0], the matrix deformation 
process [muK(t); t > 0] and the interfacial binding 
deformation [BUK(t); t > 0] are regarded to be 
independent, time-wise continuous processes of the 
Markovian character. Accordingly, the probability 
distribution of any of the above deformations u~c(t) 
may be considered to be completely defined for all 
t > z by the value assumed at t = z and, in par- 
ticular, is independent of the history of such process 
for a l l0  < t < z. 

Analytically, a Markov process is completely deter- 
mined by its transition probabilities. Letting pU(t) 
denote the transition probabilities of the stochastic 
process [uK(t); t > 0], then the time history of the 
probability distribution P[UK(t)] can be described by 

P[UK(t)] = pU(t -- z)P[UK(Z)] (35) 

Under the restriction that the process [uK(t); t > 0] is 
represented by a stationary Markov process, pU(t) is 
governed by the Chapman-Kolmogorov [21] equation 

pU(t) = pU(t)p~(O) (36) 

and the backward and forward Kolmogorov equations 
given, respectively, by 

dpU(t) 
dt = P~(t)Q~(t) 

(37) 
dpU(t) 

= Q(t)p~ 
dt 



This is subject to the initial conditions: pU(0) = I, (I is 
the identity matrix). In Equation 37, Q(t) is a time- 
dependent transition probability matrix, given by 

Q(t) = lim pu(t' t + At) (38) 
~t~0 At 

However, for simplification of the analysis, one may 
assume that the transition probability matrix is time 
independent, i.e., 

Q(t) = Q 

This suggests that the solution of the Kolmogorov 
equations given in Equation 37 can be written as [21] 

pu(t) = exp (Q" t) (39) 

Thus, by combining Equations 35 and 39, the 
former becomes 

e[uK(t)] = exp [Q" At]P[uK(z)] (40) 

where At = t - z. 
Hence, the probabilistic distribution of microdefor- 

mation within the mesodomain at any time t > z can 
be found from the corresponding distribution at 
t = r. On the other hand, if two successive distri- 
butions of deformation could be assessed experimen- 
tally, a value for the transition probability matrix Q 
would be obtained. An important objective of the 
present research is to determine experimentally the 
matrix Q using high magnification scanning techniques. 

In Fig. 5, the time evolution of the process [uK(t); 
t > 0] is demonstrated in connection with its maxi- 
mum limit, i.e. l Uk Im~x" In this figure, it is of interest to 
note that a failure criterion of the component, within 
the mesodomain, may be conjectured by setting: 

f ~ dMP[uK(t)] (41) H(t) = 1 -  UKImax 

where ur:max is a characteristic of the particular compo- 
site material under consideration. 

4. Conclusion 
The present work has been mainly aimed at formulat- 
ing a deformation theory concerning two-dimensional 
composite systems with randomly oriented, short 
viscoelastic fibres. For this purpose, the relevant field 
quantities characterizing either the geometrical or 
physical properties of the microstructure have been 
considered from the onset as random variables or 
functions of such variables. The specific features of the 
approach are as follows. 

Microdeformotfon I U l 

[ UIma x 

o* 

lU[m,. 

time, t 

Figure 5 Time-evaluation of the deformation process. 

(i) The inclusion of the most significant material 
characteristics of a composite structure into the 
formulation. This has been made possible by the 
application of a "material operator" which is a func- 
tion of actual microstructural properties of a given 
composite site. 

(ii) The presentation of possible internal distri- 
butions of stresses. The knowledge of such stress 
distributions is of considerable importance in engin- 
eering practice. 

(iii) Establishing the time-evolution of the internal 
deformation process leading to the final failure of the 
composite system. 

The theoretical analysis has been developed in a 
generalized manner that may be applied to a large 
class of fibrous systems. 
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Appendix I: Load transfer to the 
microstructure 

In Fig. 1, a mesodomain of the composite specimen is 
identified by the region between two scanning lines 
S1-S~ and $2-$2. The latter, as discussed earlier, are 
perpendicular to the direction of the external, uniaxial 
loading bl:(bl, 0, 0). Accordingly, b~ is transmitted 
equivalently to the specimen cross-sectional areas at 
S~-S~ and $2-$2. The corresponding (continuum) 
stress may be defined (Fig. A1) as 

blMnj blMnj (AI) MO'Ij = 
zC z(Wh) 

where Mnj ( J  = 1, 2, 3) is the unit normal vector to C, 
C is the cross-sectional area of the specimen perpen- 
dicular to the lead direction, Z is the matrix void ratio 
(assumed to be constant throughout the specimen), W 
designates the specimen width and h is the specimen 
thickness. 

With reference to Fig. A1, the scanning line S~-S~, 
for instance, may intersect a fibre f, that is inclined to 
the Zl-direction under an angle r0, over a certain 
length fq. At the same time, the specimen cross-section 
at S~-S~ will intersect the same fibre through an area 
fs. At any particular instant of time, the forces exerted 
on fs are statistically equivalent to a force rb I (t) and a 
couple of moments fMl (t). However, for simplification 
of the analysis and due to the fact that experimental 
values are often obtainable from uniaxial test situ- 
ations, the force vector rb(t) is shown in Fig. A1. In 
case of uniaxial external loading in the Z~-direction, 
rb(t) will have the components (fb1(t), 0, 0) and its 
magnitude may be approximated by the relation 

fS = r 7~(fF)2 1 
fb l ( / )  = ' ~  b I l_.zc(-? 7o f(o ) bl (A2)  

in which fr is the radius of the fibre, assumed to be 
constant throughout the specimen. 
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Figure A1 Load transfer to the microstructure. 

On the other hand, the scanning line SI-Si may 
intersect a crossing of two fibres, say 6 and y. In this 
case, the fibre load contributing to the external load- 
ing may be expressed, following Equation A.2, by 

Jbi = 7 \ ~ J  hi - -  2 C  

[-cos "0 + cos 
• L d b, (A3) 

with the understanding that Jb  1 "~ ~b I "~ rb 1 in this 
particular situation. Also, there exists the probability 
that the scanning line Si-Si may intersect, at the same 
point in question, a matrix material between two 
neighbouring or crossing fibres. The load contributed 
by the matrix material, within the local domain ~, to 
the external loading is denoted by mbi:(mb], 0, 0). 
Hence, in view of the earlier definition of ~, the load 
mb I may be expressed as 

I ( 1 m S 
~-. f=i  bl(t ) mb i (t) ~- b I (t) = C 

( ~" n(fr)2/l 

(A4) 

where "s = ms --~ ~'~}n 1 fs, the cross-sectional area of 
the local domain, ~, as intersected by S l - S  i and "n is 
the probable number of fibres intersecting with the 
scanning line Si-Sl within ~. 

In view of the above, one may introduce the follow- 
ing probabilities 

fp, the probabilities that the scanning line S1-SI will 
intersect, at a certain point of the specimen, a single 
fibre, 

Jp, the probabilities that S1-Si may intersect, at the 
same point, a crossing between two intersecting fibres, 
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and 
rap, the probabilities that Sl -S  1 will intersect, at the 

same point in question, a matrix material only. 

With the understanding that 0 ~< fp, Jp, mp ~< 1, 

fp + jp .~_ mp ~--- 1. (m5) 

In terms of these probabilities, the probabilistic 
value of the microstress, at the point under consider- 
ation, may be expressed as 

a~ij(t) = fpf~ij(t) + JpJr + mpm~iJ(t ) (m6) 

where J ~ l j ( t )  is the microstress at the crossing between 
two fibres. The value of the latter may be approxi- 
mated, for the present case of uniaxial loading and 
following Equation A3, by 

J~lj(t) = 21-f~ij(t) (A7) 

Combining Equations A5, A6 and A7, one may 
express Equation A6 in the following form (as 
Equation 17): 

~is(t) = P l f ~ i j ( t )  + e2m~ij(t) (A8) 

in which P1 = rp + �89 and P2 = 1 - fp - Jp. 
It is now required to determine the two probabilities 

fp and rp so that Equation A8 can be made. 
Denoting by N the total number of fibres that may 

intersect with Sl-Sl and by G the probable number of 
crossings that may occur between the N fibres along 
Si-Sl, then, one may write 

N--2G 
~, (2fr/cosfO) 

fp = y=l (A9a) 
W 

and 
G 

(2fr/cosfO) 
jp = f=l  

W 
(A9b) 

Hence, by combining Equations A8 and A9, it 



follows that: 

' [  
P1 = " ~  

and 

N-ZG 1 ~  1 (2rr/cosfO) + ~ (2rr/cosr0) 
f = l  f = l  

(A10a) 

1 INCa (2fr/cosrO)l (A10b) 
P2 = 1 - -  V L f =  1 

In the above equation, the number of fibres N is a 
function of basic geometric and physical character- 
istics of the fibrous material within the composite. It 
is often expressed in relation to the two principal axes 
of the orientation pattern of the fibres within the 
composite sheet. Hence, following [22], one may write 
that 

W;2 sin (fO)p(rO) dr0 (A1 la) N = NMD --  f~ 

(when S~-S~ is perpendicular to the major axis, 
machine direction, of the fibre orientation pattern 
within the composite) or 

f,/2 cosrOp(rO) dr 0 (A1 lb) N = Nco = f~ J-,/2 

(when S~-S1 is perpendicular to the cross-directional 
axis of the orientation pattern of the composite), in 
which E is the basic weight [22] of the fibrous material 
within the composite, f~ is the weight per unit length 
of the fibre and p(f0) is the fibre orientation distri- 
bution function. 

On the other hand, the number of junctions G 
intersecting with S~-S~ is determined essentially by 
the knowledge of the probable number of fibres N, 
expressed above, and the random orientation of their 
axes over the plane of the sheet. For this purpose, we 
introduce the scanning area S whose major axis is the 
scanning line S~-S~, as shown in Fig. A1. The width 
Ap of this area is infinitesimal, i.e. A# < 2rr, such that 
a crossing occurring between two fibres in S must 
intersect with S~-SI. Here, we consider a fibre (~) of 
length l lying in the plane of the scanning area, with 
its axis making an angle (60) with the direction of 
the Z~-axis, as shown in Fig. A1. We also consider 
another fibre (y), of same length l, dropped into the 
scanning area at random with an angle 0 ~< ~0 ~< 2g 
between its axis and the Zt-direction. The prob- 
ability of interception between the two fibres in the 
scanning area may therefore be written as [23] (12/ 
S) sin (60 - ~0). Hence., by employing the probability 
density function of the angle r0, i.e. p(O), and consider- 
ing that all fibres are of the same length, the prob- 
ability of interception between two fibres in S may be 
expressed, on the average, as: 

l 2 
= S f~ fo sin (~0 - ~O)p(~O) d~Op(~O) d~0 (A12) 

Letting L represent the number of ways in which pairs 
of fibres can be selected within the scanning area, then 
the probable number of interceptions between the 
fibres in S may be written as 

G = eL (A13) 
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Figure A2 Equilibrium of  a fibre embedded in matrix material. 

However, in order to calculate L in (A13), one may 
consider one of the N fibres in S: it can intercept all the 
fibres in S except itself or make (N - 1)interceptions. 
Considering all of the N fibres in S gives N(N - 1) 
combinations of two fibres. As each fibre is counted 
twice, then 

L = � 8 9  1) = �89 >> 1 (114) 

Combining Equations 113 and A14, the probable 
number of crossings between fibres along S~-SI is 
given by 

t/N 2 
G = (A15) 

2 

in which r/is given by Equation A12. In the case of 
non-oriented fibrous pattern within the composite, i.e. 
when the fibre angular distribution is circular, the 
function p(O) appearing in Equations Al l  and AI2 
may be expressed [23] by p(0) = 1/n for a circular, 
angular distribution, and hence it can be shown, in 
this particular case, that 

N.~,I 2 
G = nz#f~ (A16) 
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Figure A3 Equilibrium of  the connection between two fibres 

and 7. 
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one dimensional case that 

sin 60[COS270 + COS 2 6 0  - -  cot 60(sin s0 cos s0 + sin 60 cos 60)] r). = 
cos 60 sin (s0 - ~0) 

(A21) 

B~IJ(t) 

where 

Further, it is necessary to establish the interdepen- 
dence between the local stresses, i.e. f~ij(t), B~IJ(t ) and 
mCu(t ) for a particular fibre f embedded in the matrix 
m. Thus, with reference to Fig. A2, the unit normal 
vector to the fibre section area fs, at $1-$1, is denoted 
by fnj and the associated traction vector is designated 
by fTj. The corresponding vectors acting on another 
sectional area fs ' ,  of  the same fibre are, respectively, 
rnj and rT;. In the analysis, the resultant effect of  the 
two tractions are taken to be equivalent to the effect of 
the interfacial traction vector BTj acting between the 
fibre and the matrix. Hence, one may write that 

fT j ( t ) f s  - fT~(t)fs ' --  BTj(t)rcfy ( A 1 7 )  

where rc is the circumference of  the fibre in contact 
with the matrix and ry is a variable indicating the 
length along the fibre between the sectional areas rs 
and fs'. 

In terms of  the microstresses corresponding to the 
traction vectors in (A17), the latter becomes 

[f ~ij(t)fHj]rs - [f~ij(t)fn~]fs = [B ~Ij(t)Brlj]fcfy 

(A18a) 
or  

anjl  [fnjfs - fn'jfs'f,~(t)]f~ij(t) (A18b) 
-- fcf y 

f2(t) = fr162 (A18c) 

Further, by combining Equations 9, 13, 15 and 
A18a, it is possible to write a relation between the 
matrix microstress r~u(t ) and that of the fibre f ~ i j ( t )  a s  

(Equation 18) 

mr ) = ~tc(t) r~lj(t) ( A 1 9 )  

in which ~:(t) takes the form 

Bnjl 
~ = mFij S BI~IjI rc--- ~ (fnjfs - 2rn'jfs ') 

+ FIJK (~SK (A20) 

where 6sK is the Kronecker delta. 
It is now required to determine the parameter f2(t) 

of  Equation A18b so that Equations A18a and A19 
can be made. In this regard, one may consider for the 
simple one-dimensional case, the equilibrium of the 
connection between two fibres 6 and ~, for instance, 
under the effect of  internal axial forces ~F, ~F~, 7F 1 and 
SF~ acting at the ends of the fibres as shown in Fig. A3. 
In this figure, the orientation of  the two fibres is given 
respectively by 60 and s0. Hence, following the analysis 
carried out by Haddad [24], it can be shown for the 

It is assumed in the present analysis that the fibre 
orientation angle is experimentally determinable [7], 
hence the factor f2 can be determined by employing 
Equation A21. 
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